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ABSTRACT

A grid box in a numerical model that ignores subgrid variability has biases in certain microphysical and
thermodynamic quantities relative to the values that would be obtained if subgrid-scale variability were taken
into account. The biases are important because they are systematic and hence have cumulative effects. Several
types of biases are discussed in this paper. Namely, numerical models that employ convex autoconversion
formulas underpredict (or, more precisely, never overpredict) autoconversion rates, and numerical models that
use convex functions to diagnose specific liquid water content and temperature underpredict these latter quantities.
One may call these biases the ‘‘grid box average autoconversion bias,’’ ‘‘grid box average liquid water content
bias,’’ and ‘‘grid box average temperature bias,’’ respectively, because the biases arise when grid box average
values are substituted into formulas valid at a point, not over an extended volume. The existence of these biases
can be derived from Jensen’s inequality.

To assess the magnitude of the biases, the authors analyze observations of boundary layer clouds. Often the
biases are small, but the observations demonstrate that the biases can be large in important cases.

In addition, the authors prove that the average liquid water content and temperature of an isolated, partly
cloudy, constant-pressure volume of air cannot increase, even temporarily. The proof assumes that liquid water
content can be written as a convex function of conserved variables with equal diffusivities. The temperature
decrease is due to evaporative cooling as cloudy and clear air mix. More generally, the authors prove that if an
isolated volume of fluid contains conserved scalars with equal diffusivities, then the average of any convex,
twice-differentiable function of the conserved scalars cannot increase.

1. Introduction

Many atmospheric processes 1) can be represented in
a numerical model as nonlinear functions of model-pre-
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dicted variables and 2) are too small to be resolved by the
model. Prior authors have noted that such nonlinear, small-
scale processes pose a special difficulty for numerical mod-
els (e.g., Kogan 1998; Stevens et al. 1998; Stevens et al.
1996; Fowler et al. 1996; Fowler and Randall 1996).
Namely, a model errs if it substitutes grid box average
values into the nonlinear function corresponding to the
small-scale process. To avoid such ‘‘averaging errors,’’ the
model needs information about subgrid variability.



1118 VOLUME 58J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

Prior authors have pointed out several undesirable
consequences of ignoring subgrid variability. For ex-
ample, Fowler et al. (1996) and Fowler and Randall
(1996) parameterized autoconversion of cloud droplets
to raindrops in a general circulation model by imple-
menting an autoconversion parameterization developed
for models with much smaller grid boxes. To obtain
reasonable simulations, they were forced to reduce the
threshold in specific liquid water content, ql, at which
autoconversion begins. The problem, they suggested,
was that the grid box average of ql may be much smaller
than ql in the localized areas where precipitation forms.
Kogan (1998) performed a large eddy simulation of
drizzling stratocumulus and then compared domain-av-
eraged autoconversion, as calculated by the formula of
Khairoutdinov and Kogan (2000), with the result of sub-
stituting domain-averaged quantities into the Khairout-
dinov–Kogan formula. The two results differed mark-
edly. Stevens et al. (1998) hypothesized that neglecting
correlation terms in Reynolds-averaged microphysical
equations causes some one-dimensional models to spu-
riously activate cloud droplets at the tops of stratocu-
mulus layers; these authors also used a sophisticated
bin-microphysics model to study the influence of av-
eraging errors on computations of drizzle formation.
Stevens et al. (1996) suggested that ignoring subgrid
variability can lead to spurious supersaturation at cloud
edges.

Prior authors have also discussed biases. Here, we
define a bias to be an error that always has the same
sign. Cahalan et al. (1994) pointed out that ignoring
subgrid variability in computations of cloud albedo can
lead to the so-called plane-parallel albedo bias. They
noted that the bias is a consequence of a theorem known
as Jensen’s inequality (Jensen 1906). The origin of bi-
ases in radiative transfer applications was also discussed
by Newman et al. (1995). The independent work of
Rotstayn (2000) and Pincus and Klein (2000) discussed
biases in autoconversion and their implications for gen-
eral circulation models. Stevens et al. (1996) stated that
ignoring subgrid variability leads to underpredictions of
ql and temperature, T , where an overbar denotes a grid
box average. Stevens et al. (1996) provided an illumi-
nating physical interpretation of the underpredictions
but did not prove that they are systematic.

The present paper proves that ignoring subgrid-scale
variability leads not only to errors in certain micro-
physical and thermodynamic quantities, but also to bi-
ases (that are systematic). The proof follows directly
from Jensen’s inequality, upon noting that these quan-
tities are represented by convex or concave functions.1

A bias is more pernicious than an ordinary error because
a bias is single-signed, rather than partially self-can-

1 Some authors refer to a convex function as ‘‘concave up’’ and a
concave function as ‘‘concave down.’’

celing. Our analysis provides a straightforward way to
identify what conditions and parameterizations lead to
(systematic) biases.

In section 2 of this paper, we first note that the Kessler
autoconversion formula is convex, and review the rea-
son that neglecting subgrid variability leads to a bias
when using a convex or concave formula. Then we note
that the nonlinear autoconversion parameterization of
Khairoutdinov and Kogan (2000) is neither convex nor
concave and hence is not associated with a (systematic)
bias. To demonstrate that errors associated with the Kes-
sler and Khairoutdinov–Kogan parameterizations can be
significant in important cases, in section 3 we examine
boundary layer clouds observed during the Atlantic
Stratocumulus Transition Experiment (ASTEX) field
experiment. In section 4, we prove that if ql is diagnosed
via a convex function and subgrid variability is ignored,
then ql and also the average temperature T are under-
predicted in partly cloudy grid boxes. By deriving the
autoconversion, liquid water, and temperature biases
from Jensen’s inequality, we make clear that all these
biases have an underlying and common feature: namely,
all are associated with convex formulas. In section 5,
we prove that if a material fluid volume is isolated and
at constant pressure, and if total specific water content
qt and liquid water temperature Tl are conserved within
the volume, then ql and T decrease or stay constant in
time. The decrease is intimately related to the fact that
ql and T can be approximated as convex functions of
conserved variables.

We stress that the present paper is not intended to be
a critique of parametric formulas such as the Kessler or
Khairoutdinov–Kogan autoconversion formulas. How-
ever, we do indirectly critique numerical models that
ignore subgrid variability.

2. Grid box average autoconversion bias

We discuss the Kessler autoconversion parameteri-
zation first because it is simple, familiar, and widely
used. The Kessler autoconversion rate for cloud droplets
to raindrops is

AK 5 K1(ql 2 qcrit)H(ql 2 qcrit), (1)

where qcrit is a critical threshold in ql below which au-
toconversion vanishes, K1 is an inverse timescale, and
H is the Heaviside step function (Kessler 1969). In the
Pennsylvania State University–National Center for At-
mospheric Research Mesoscale Model version 5, qcrit 5
0.5 g kg21 and K1 5 1023 s21 (Grell et al. 1994). The
Kessler formula is displayed as the thick solid line in
Fig. 1.

The Kessler formula is convex. Graphically, this
means that any line segment (e.g., the dashed line in
Fig. 1) that joins two points on the Kessler curve lies
entirely on or above the Kessler curve, that is, in the
gray shaded region in Fig. 1 (Hiriart-Urruty and Le-
maréchal 1993, p. 3). Because the Kessler formula is
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FIG. 1. The Kessler autoconversion rate (thick solid line) and a
possible pdf of ql composed of two delta functions at ql 5 0 g kg21

and ql 5 1 g kg21. For this pdf, [ql , AK(ql)] is represented by the
large dot. Because the Kessler formula is convex, AK(ql) 5 0 is less
than AK(ql) , and any line segment that connects two points on the
Kessler formula, such as the thick dashed line shown, must lie within
the gray shaded region.

convex, it turns out that if the grid box average specific
liquid water content, ql , is substituted into the Kessler
formula [(1)], the resulting autoconversion rate is al-
ways less than or equal to the autoconversion rate ob-
tained by calculating the Kessler autoconversion rate at
each point within the grid box and then averaging. That
is, AK(ql) # AK(ql) , where an overbar denotes a grid
box average.

Before proving this inequality, we illustrate it by a
simple example. Consider a grid box that is occupied
half by clear air and half by cloudy air with ql 5 1 g
kg21. The probability density function (pdf ) of ql for
this grid box consists of two equally strong Dirac delta
functions, one located at ql 5 0 and the other at ql 5
1 g kg21, as depicted in Fig. 1. According to the Kessler
formula, autoconversion occurs in the cloudy half of the
grid box but not the clear half. The autoconversion rate,
averaged over the grid box, is then AK(ql) 5 0.25 3
1023 g kg21 s21, as shown by the dot in Fig. 1. But if
one inserts ql 5 0.5 g kg21 into the Kessler formula
[(1)], then one finds that the autoconversion rate AK(ql)
is zero.

Inspection of the Kessler autoconversion curve in Fig.
1 indicates the situations in which the underestimate is
large. Since the Kessler curve is linear except at qcrit ,
there is no bias if ql $ qcrit everywhere in the grid box
or if ql # qcrit everywhere. Also, there is no bias if ql

is uniform throughout the grid box, that is, if the pdf
of ql is a single delta function. Therefore we can surmise
that the Kessler bias is most significant when ql is near

the threshold for autoconversion (i.e., the cloud is weak-
ly drizzling) and ql is highly variable.

To prove that a bias is associated with the Kessler
formula, we use Jensen’s inequality (Jensen 1906). But
first, we define convex functions more formally. Con-
sider a function f (L1, . . . , ) of Ns scalars. SupposeLNs

that 0 , l , 1 is a fractional weighting and that
(L1, . . . , ) and (V1, . . . , ) are two vectors. ThenL VN Ns s

f is convex if and only if

f [lL1 1 (1 2 l)V1, . . . , 1 (1 2 l) ]lL VN Ns s

# l f (L1, . . . , ) 1 (1 2 l) f (V1, . . . , ),L VN Ns s
(2)

for all such (L1, . . . , ), (V1, . . . , ), and l (Dud-L VN Ns s

ley 1989, p. 272). A simple criterion for convexity is
available in the case that Ns 5 1 and f is twice differ-
entiable, namely, that the second derivative of f be ev-
erywhere nonnegative: d2f (L1)/ $ 0 (Hiriart-Urruty2dL1

and Lemaréchal 1993, p. 34). A function f is said to
be concave when 2 f is convex (Hiriart-Urruty and Le-
maréchal 1993, p. 145). Now define an average over a
grid box as

f (L , . . . , L )1 Ns

[ dL · · · dL P(L , . . . , L ) f (L , . . . , L ),E 1 N 1 N 1 Ns s s

(3)

where P(L1, . . . , ) is the joint probability density ofLNs

(L1, . . . , ). The integral is taken over all possibleLNs

values of (L1, . . . , ).LNs

Then Jensen’s inequality may be stated as follows
(Dudley 1989, p. 273): If f (L1, . . . , ) is a convexLNs

function, then

f (L , . . . , L ) # f (L , . . . , L ). (4)1 N 1 Ns s

Therefore, substituting grid box average values
(L1 , . . . , ) into a convex parameterization f some-LNs

times underpredicts and never overpredicts the quantity
we usually desire, the grid box average of f, that is,

. Likewise, substituting grid box averagef (L , . . . , L )1 Ns

values into a concave function sometimes overpredicts
and never underpredicts the quantity we desire. Jensen’s
inequality has very general implications. Whenever a
convex or concave formula of any sort is applied in a
numerical model grid box, and subgrid-scale variability
is ignored, a (systematic) bias occurs, relative to what
would be obtained if subgrid variability were accounted
for. (Of course, the bias may have negligible magnitude
in practice.)

To prove that a bias is associated with the Kessler
formula, we simply note that this formula is convex.
Then Jensen’s inequality implies that AK(ql) # AK(ql) .

Some autoconversion parameterizations depend on
droplet number concentration, N, as well as ql. Including
the effect of N on autoconversion is important for as-
sessing how clouds respond to a change in the concen-
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tration of cloud condensation nuclei (Cotton and Anthes
1989, p. 92). When an autoconversion formula depends
on two parameters, determining whether the formula is
convex or concave becomes subtle. Consider the au-
toconversion formula of Khairoutdinov and Kogan
(2000):

AKK 5 K2 Nb,aql (5)

where K2 5 7.419 3 1013 m25.37 s21, a 5 2.47, and b
5 21.79. A sufficient condition for the convexity of a
two-dimensional function is (see Boas 1983, 170–171
and Hiriart-Urruty and Lemaréchal 1993, 190–191)

2 2] A ] AKK KK
$ 0 $ 0

2 2]q ]Nl

22 2 2] A ] A ] AKK KK KK
$ . (6)

2 2 1 2]q ]N ]q ]Nl l

The first two of these conditions are satisfied for Khai-
routdinov and Kogan’s values of the exponents a and
b. Therefore, if N were treated as a constant parameter
in AKK, then ignoring subgrid variability in ql would
lead to systematic underestimates; that is, AKK(ql , N) #

. Likewise, for b 5 21.79 the second con-A (q , N)KK l

dition implies that AKK(ql , N) # . However,A (q , N)KK l

if a . 0 and b , 0, as in the Khairoutdinov–Kogan
parameterization, then the third condition in (6) holds
if and only if a 1 b . 1. This condition is violated for
the values of a and b used by Khairoutdinov and Kogan.
Although the Khairoutdinov–Kogan formula would be
convex if either N were a constant parameter or ql were
a constant parameter, the formula is not convex when
both are variable. For example, consider a grid box for
which ql is proportional to N. Then AKK } N 0.68, and
N 0.68 is a concave function of N.

3. Assessment of autoconversion errors using
observational data

We have seen that when the Kessler autoconversion
formula is used, a systematic bias can result from neglect
of subgrid variability. This fact can be deduced solely
by noting that the Kessler formula is convex. But to
determine whether or not the bias is significant, one
needs to examine data. To show that the Kessler bias
can be large in important cases, we calculate the biases
associated with a few examples of boundary layer
clouds from the ASTEX field experiment. We also ex-
amine averaging errors associated with inserting mean
values into the Khairoutdinov–Kogan parameterization.
Using field data to assess biases has an advantage over
using numerical data calculated by large eddy simula-
tion models. Namely, observed variability of scalars in
boundary layers is often greatest at long wavelengths
(Cotton and Anthes 1989, 373–383), but large eddy sim-
ulations are still often restricted to horizontal domains
of several kilometers or less in length; therefore, a large

eddy simulation may not capture the full variability that
should be accounted for within a mesoscale (e.g., 50
km) grid box.

ASTEX was an investigation of marine boundary
layer clouds near the Azores over the North Atlantic
Ocean. An overview of ASTEX can be found in Al-
brecht et al. (1995) and in a special issue (volume 52,
issue 16) of the Journal of the Atmospheric Sciences.
We examine aircraft data from long, constant-altitude
flight legs made by The Met. Office C-130 aircraft in
two boundary layer regimes. The first regime is a driz-
zling stratocumulus layer observed on the night of 12–
13 June 1992 during the first Lagrangian intensive op-
erations period (flight A209, denoted DRZ). The sec-
ond regime is a cumulus-rising-into-intermittent-stra-
tocumulus layer observed on 20 June 1992 during the
second Lagrangian intensive operations period (flight
A213, denoted CUSCU). We have truncated the legs
to 500 s worth of data, so that all legs span approxi-
mately the same distance, about 50 km. This is a typical
grid box size in a mesoscale model. Linear trends were
not removed from the legs.

To quantify autoconversion errors, we use measure-
ments of ql and droplet number concentration N. Here
ql is obtained from a Johnson–Williams hot-wire probe
and logged at 4 Hz. For the autoconversion calculations,
ql is averaged to 1 Hz. Droplet concentration N was
measured with a forward scattering spectrometer probe
and averaged to 1 Hz. Following Wood and Field
(2000), we assume that when N , 5 cm23, large aerosol
may be present but cloud droplets are not. In these clear
areas, the Johnson–Williams probe may still record
small nonzero values of ql because of instrument noise
about the zero threshold. Since the Khairoutdinov–Ko-
gan autoconversion formula, AKK, approaches infinity
for vanishing N and nonzero ql, we set ql and AKK to
zero when N , 5 cm23, in order to avoid spurious
contributions to the autoconversion rate. Cloud fraction
is computed as the fraction of time (distance) for which
N . 5 cm23.

Below we discuss biases in ql and T. We take this
opportunity to mention the additional measurements re-
quired to assess these biases. Temperature is obtained
using a Rosemount deiced total temperature sensor
logged at 32 Hz. To obtain total specific water content
qt, we use data from a Lyman-a hygrometer logged at
64 Hz and averaged to 32 Hz. For the ql and T biases,
ql is interpolated to 32 Hz. However, the Johnson–Wil-
liams instrument response time is only about 1 Hz
(which corresponds to roughly 100 m). This prevents
an estimate of small-scale variability. Further details of
the instrumentation are contained in Rogers et al. (1995).

Time series of the six legs we shall discuss are shown
in Fig. 2. Three of the legs—DRZ-OV1, DRZ-OV2, and
CUSCU-OV1—are entirely cloudy, that is, overcast.
Three others—CUSCU-PC1, CUSCU-PC2, and CUS-
CU-PC3—are partly cloudy. The pdfs of ql for these
legs (along with the Kessler formula) are plotted in Fig.
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FIG. 2. Time series of specific liquid water content, ql, for six ASTEX legs.

FIG. 3. The pdf of ql and the Kessler autoconversion rate for six ASTEX legs. In leg DRZ-OV1,
the pdf lies mostly to the right of the autoconversion threshold, qcrit 5 0.5 g kg21, and therefore
the grid box average autoconversion bias is small. In the three right-hand panels, the bin at ql 5
0 has been truncated by the top border of the plot.
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TABLE 1. Six 50-km ASTEX legs.

DRZ-OV1 DRZ-OV2 CUSCU-OV1 CUSCU-PC1 CUSCU-PC2 CUSCU-PC3

Date
Start time (UTC)
Cloud fraction
ql 6 standard deviation of ql (g kg21)
N (cm23)
AK(ql) (g kg21 s21)
AK( (g kg21 s21)q )l
[AK(ql) 2 AK(ql)]/AK(ql)
AKK(ql, N ) (g kg21 s21)
AKK( , N) (g kg21 s21)ql

[AKK(ql, N) 2 AKK(ql , N)]/AKK(ql, N )

13 Jun 1992
0119:11

1.0
0.62 6 0.070

134
1.247 3 1024

1.213 3 1024

0.027
2.820 3 1026

2.517 3 1026

0.11

13 Jun 1992
0253:13

0.99
0.58 6 0.097

138
9.541 3 1025

8.049 3 1025

0.16
2.250 3 1026

2.010 3 1026

0.11

20 Jun 1992
0723:13

1.0
0.49 6 0.21

241
6.588 3 1025

0
1

5.424 3 1027

4.888 3 1027

0.099

20 Jun 1992
0655:42

0.34
0.093 6 0.20

55
1.515 3 1025

0
1

1.181 3 1027

1.113 3 1027

0.058

20 Jun 1992
0638:09

0.39
0.10 6 0.22

97
1.927 3 1025

0
1

7.816 3 1028

4.560 3 1028

0.42

20 Jun 1992
0909:04

0.32
0.088 6 0.18

77
7.562 3 1026

0
1

4.861 3 1028

5.220 3 1028

20.074

FIG. 4. Kessler autoconversion rates from six ASTEX legs. Un-
biased rates, AK(ql) , are shown in black, and biased rates, AK(ql), in
white. Because the Kessler formula is convex, AK(ql) # AK(ql) .

3. A summary of the characteristics of these legs is listed
in Table 1. The biased autoconversion rates in Table 1
were computed by substituting leg-averaged values into
the autoconversion formulas. The unbiased autocon-
version rates were obtained by computing the autocon-
version rate at each sample point along the leg and then
averaging. Within the flight legs, the standard deviation
in pressure is small, indicating that the aircraft was fly-
ing at almost constant altitude.

Figure 4 displays the unbiased AK(ql) and biased
AK(ql) Kessler autoconversion rates. The bias is signif-
icant in all cases except DRZ-OV1. This layer is fairly
moist and homogeneous (ql 5 0.62 6 0.070 g kg21)
and therefore the pdf of ql lies mostly to the right of
the threshold in the Kessler curve qcrit 5 0.5 g kg21 (see
Fig. 3). For the most part, the pdf samples a linear region
of the Kessler curve, and hence the bias is small. This
layer illustrates the point that a strongly drizzling, fairly
homogeneous layer has a small or zero Kessler auto-
conversion bias.

To correct errors in autoconversion due to subgrid
variability, Fowler et al. (1996) and Fowler and Randall
(1996) suggest predicting cloud fraction and inserting

into the Kessler formula the liquid water content av-
eraged over just the cloudy regions, rather than the
whole grid box. This remedy can diminish the bias in
some partly cloudy layers, but not the ones studied here.
For our partly cloudy layers, even the in-cloud average
liquid water content is less than the Kessler threshold,
so that zero autoconversion is still predicted even when
cloud fraction is taken into account. Furthermore, ac-
counting for partial cloudiness cannot aid autoconver-
sion prediction in fully overcast layers, and the bias can
be large even when the grid box is entirely cloudy, as
illustrated by leg CUSCU-OV1.

In fact, one can prove that if an autoconversion pa-
rameterization A(ql, N) is convex, then accounting for
cloud fraction removes some of the autoconversion bias
but still leaves a residual, systematic bias. To state this
mathematically, we define and as the liquidcld clrq ql l

water averaged over the cloudy and clear parts of the
grid box, respectively. We adopt analogous notation for
N, and we also let C denote cloud fraction. Then ql 5

1 (1 2 C) and similarly for N . By definition,cld clrCq ql l

ql, N, and A are zero in the clear areas. Then one may
show that

cldcldA(q , N ) # CA(q , N )l l

cld
# CA(q , N ) 5 A(q , N ). (7)l l

The middle quantity, CA( , ), is the autoconver-cld cldq Nl

sion rate that a model would obtain if it accounted for
cloud fraction. It exceeds the left-hand expression,
A(ql , N), which is what a model would obtain if it ig-
nored all subgrid variability. But CA( , ) still sys-cld cldq Nl

tematically underpredicts the far right-hand expression,
A(ql, N) , which is the unbiased autoconversion rate. The
left-hand inequality follows directly from the definition
of convexity, (2). The right-hand inequality follows
from Jensen’s inequality, (4), applied with respect to the
within-cloud average.

The Khairoutdinov–Kogan autoconversion rates,
AKK(ql, N) and AKK(ql , N), are shown in Fig. 5. The
Khairoutdinov–Kogan errors are smaller than the Kes-
sler biases, but they are significant in some cases. For
all cases examined except CUSCU-PC3, AKK(ql , N) un-
derpredicts the quantity we desire, AKK(ql, N) , as did
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FIG. 5. Khairoutdinov–Kogan autoconversion rates for six ASTEX
legs. Rates with no averaging error, AKK(ql, N ) , are shown in black,
and rates that contain averaging errors, AKK(ql , N ), in white. Here
AKK(ql, N ) exceeds AKK(ql , N) for all legs except CUSCU-PC3.

the Kessler formula. For CUSCU-PC3, however,
AKK(ql , N) overpredicts AKK(ql, N) . The overprediction
is possible only because we have treated both N and ql

as variables, rather than constant parameters, in the cal-
culation of AKK(ql, N) . In this case, an error of either
sign may occur, depending on the pdf associated with
a leg.

Table 1 shows that the Kessler and Khairoutdinov–
Kogan autoconversion rates differ greatly, a conclusion
also reached in the more detailed comparison of Wood
(2000). The discrepancy between the Kessler and Khai-
routdinov–Kogan rates for leg DRZ-OV1 greatly ex-
ceeds the averaging error in the Khairoutdinov–Kogan
formula. Over the coming years, autoconversion for-
mulas are likely to improve and hence differences be-
tween them are likely to narrow. Such improvements
will not, however, reduce averaging errors or biases, for
a given grid box size. Therefore, modelers should strive
to account for subgrid variability and thereby reduce
averaging errors, in addition to developing physically
representative autoconversion formulas.

4. Grid box average liquid water content and
temperature biases

We now discuss biases that arise in partly cloudy grid
boxes when average specific liquid water content, ql ,
and average temperature, T , are diagnosed from con-
served variables without accounting for subgrid-scale
variability. Different numerical models perform this di-
agnosis using different formulas of varying accuracy.
We will choose to use a diagnostic formula, (15), that
requires us to introduce a variable s. We use this formula
because its convexity can be assessed by inspection.
Although most models do not use this particular formula

(an exception is Bougeault 1981), they use formulas
with similar properties.

Consider a grid-box-sized volume of air at constant
pressure. Assume that all vapor in excess of saturation
is instantly condensed into liquid, and that no ice forms.
To facilitate discussion, we first define the liquid water
temperature Tl, which is akin to the linearized liquid
water potential temperature:

L
T 5 T 2 q . (8)l lcp

The variable L is the latent heat of vaporization, and cp

is the specific heat at constant pressure.
Next we need to define the variable s 5 s(qt, Tl, p)

5 s(qt , Tl , p) 1 s9, where qt is the total specific water
content (including vapor and liquid), and p is the pres-
sure. Here s is conceptually appealing because it can be
written as a function of conserved variables (and pres-
sure); furthermore, when qt . qs(T, p), where qs(T, p)
is the saturation specific humidity, s approximates ql 5
qt 2 qs(T, p). However, when qt , qs(T, p), ql 5 0, but
s is negative. Also, in this case s ± qt 2 qs(T, p), and
so s cannot be simply interpreted as the deviation of qt

from saturation.
The variable s can be written (Lewellen and Yoh

1993; see also Sommeria and Deardorff 1977; Mellor
1977):

(1 1 b q )1 ts 5 q 2 q (T , p) , (9)t s l [1 1 b q (T , p)]1 s l

where

R e (T )d s lq (T , p) 5 , (10)s l R p 2 [1 2 (R /R )]e (T )y d y s l

R L Ldb 5 b (T ) 5 . (11)1 1 l 1 21 2R R T c Ty d l p l

Here es is the saturation vapor pressure over liquid, and
Rd and Ry are the gas constants for dry air and water
vapor. When positive, s is an approximation of ql only
because the derivation of s requires that qs(T, p) be ex-
panded about T 5 Tl. But since (T 2 Tl)/Tl K 1, the
approximation is accurate.

Taylor expanding s about s(qt , Tl , p) to first order, and
assuming

L |q 2 q (T , p)|t s l2 K 1, (12)
c T 1 1 b (T )qp l 1 l t

we find the following approximation for s9:

q9ts9 5
1 1 b (T )q (T , p)1 l s l

1 1 b (T )q ]q (T , p)1 l t s l2 T9. (13)l2 )[1 1 b (T )q (T , p)] ]T1 l s l l T 5Tl l

This formula is somewhat more accurate than the one
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TABLE 2. Biases in ql and T for three 50-km ASTEX legs.

CUSCU-PC1 CUSCU-PC2 CUSCU-PC3

ql(qt, Tl, p ) (g kg21)
ql(qt , Tl , p ) (g kg21)
ql(qt, Tl , p )2ql(qt,Tl,p ) (g kg21)
T(qt, Tl, p) (K)
T(qt , Tl, p ) (K)
T(qt, Tl, p ) 2 T(qt , Tl , p ) (K)

9.70 3 1022

0
9.70 3 1022

278.72
278.48

0.24

1.31 3 1021

0
1.31 3 1021

282.02
281.70

0.32

1.18 3 1021

0
1.18 3 1021

280.08
279.79

0.29

TABLE 3. Biases in ql and T for four 1-km segments from ASTEX leg CUSCU-PC2.

Segment 1 Segment 2 Segment 3 Segment 4

Start time (UTC)
ql(qt, Tl, p ) (g kg21)
ql(qt , Tl , p ) (g kg21)
ql(qt, Tl , p )2ql(qt,Tl,p ) (g kg21)
T(qt, Tl, p) (K)
T(qt , Tl, p ) (K)
T(qt, Tl, p ) 2 T(qt , Tl , p ) (K)

0639:09
4.20 3 1021

2.64 3 1021

1.56 3 1021

282.61
282.22

0.39

0644:29
2.26 3 1021

0
2.26 3 1021

281.71
281.15

0.56

0644:59
1.55 3 1021

8.20 3 1023

1.47 3 1021

281.81
281.45

0.36

0645:39
1.57 3 1021

5.92 3 1023

1.51 3 1021

281.72
281.34

0.38

given by Lewellen and Yoh (1993) because Eq. (13)
contains a factor in the second term, (1 1 b1qt)/(1 1
b1qs), that is neglected by Lewellen and Yoh. In (13),
we have

c]q (T , p) ps l 5 b (T )q (T , p) (14)1 l s l]T Ll

by the Clausius–Clapeyron equation (see Sommeria and
Deardorff 1977).

Given s(qt , Tl , p) and s9, ql at a point within a volume
can be approximated as follows (Bougeault 1981):

q 5 [s(q , T , p) 1 s9]H[s(q , T , p) 1 s9]. (15)l t l t l

Here H denotes the Heaviside step function. To sum-
marize, (15) relies on two approximations: that (T 2
Tl)/Tl K 1, and that fluctuations in Tl and qt are small.

Now we are ready to prove that ignoring fluctuations
in s leads to an underestimation of ql . To do so, we note
that in the approximate formula (15), ql is a convex
function of s9. The result then follows directly from
Jensen’s inequality. Most numerical models do not use
the particular formula (15), but all such diagnostic for-
mulas for ql are approximately convex in shape.

Equation (15) resembles the Kessler autoconversion
formula (1). Hence the bias in ql has similar properties
to the Kessler bias. For instance, the bias in ql disappears
if the grid box is either entirely overcast or entirely clear.
Also, the bias is largest if the grid box contains clear
areas that are very dry and cloudy areas that are very
moist, with the grid box average near saturation.

We can also prove that ignoring fluctuations in s leads
to an underestimate of T . Suppose the liquid water tem-
perature Tl is predicted without bias. Then (8) shows
that if ql is underestimated, so is T .

The approximation (15) is valid only when fluctuations
in qt and Tl over a grid box are small. When the fluctuations
are not negligible, but p is approximately constant, then

the existence of a bias depends on the convexity of a two-
dimensional function ql(qt, Tl, p). If we make the approx-
imation that ql ù s(qt, Tl, p)H[s(qt, Tl, p)], then it turns out
that ql is neither a convex nor concave function of qt and
Tl. Therefore, one can construct cases in which neglecting
subgrid variability actually overestimates ql. However, the
overestimates are typically minuscule. For instance, con-
sider an entirely cloudy volume of air with p 5 600 hPa
and qt 5 2.2 g kg21 everywhere, but with Tl 5 254 K in
half the volume and Tl 5 255 K in the other half. Then
neglecting subgrid variability overestimates ql by about 5
3 1024 g kg21.

To determine the magnitude of the biases in data, we
return to the three partly cloudy ASTEX legs from 20
June 1992 (flight A213, denoted CUSCU), each of
which is approximately 50 km in length. Table 2 sum-
marizes the biases for these legs. In this table, ql is
computed via the formula ql 5 s(qt, Tl, p)H[s(qt, Tl, p)]
and T is computed via (8). Averaging is performed as
for the autoconversion calculations. The biases are mod-
est but not negligible.

The biases exist for shorter legs as well. To illustrate
this, we divide leg CUSCU-PC2 into ;1 km segments.
Most segments are either entirely cloudy or entirely
clear and therefore have no bias. But some segments
near cloud edges do have large biases. The segments
with the four largest biases are listed in Table 3. A
buoyancy deficit of the magnitude observed here (;0.4
K) could significantly lower the maximum cloud-top
height attained by individual clouds in a model.

5. Decrease of ql in an isolated system

As discussed above, the fact that ql can be approxi-
mated as a convex function, (15), has implications for
numerical modeling of clouds because convexity of ql

leads to biases in ql and T . In this section, we set aside
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these modeling implications and turn to theoretical con-
sequences of convexity of ql on the physics of mixing.
Namely, we prove that as a partly cloudy volume of air
homogenizes through mixing, ql decreases.

Consider an isolated, partly cloudy volume of air at
constant pressure. Suppose that ql can be adequately
approximated by (15), that is, as a convex function of
s9. Furthermore, suppose that Tl and qt are conserved.2

The time evolution of the pdf of s9 determines the time
evolution of ql . How does the pdf of s9 evolve? Ad-
vection merely rearranges fluid particles and therefore
cannot directly alter the pdf of s9 within the volume.
Diffusion, however, tends to homogenize s9, that is,
bring the pdf of s9 toward a delta function. In this uni-
form final state,

q [s(q , T , p) 1 s9] z 5 q [s(q , T , p)]. (16)l t l time→` l t l

But according to Jensen’s inequality [(4)], if ql is a
convex function, then the minimum possible value of
ql , among all pdfs of s9 that are consistent with qt and
Tl , is ql[s(qt , Tl , p)]. Hence as time → `, ql achieves
its minimum value.

One can go further. If pressure is constant, and ql can
be approximated as a convex function of conserved var-
iables with equal diffusivities, one can prove that ql in an
isolated, partly cloudy system decreases or stays constant
in time. Neither advection nor diffusion can cause ql to
increase, even temporarily. Using the definition of Tl, Eq.
(8), we may also conclude that T decreases or remains
constant in time. More generally, one can prove that the
average of any convex, twice-differentiable function f of
conserved variables with equal diffusivities in an isolated
fluid system decreases or remains constant in time.

The physical content of the proof may be summarized
as follows. Consider a conserved scalar f in an isolated
fluid volume and a convex function f (f ). Assume that
initially the pdf of f is broad because f varies strongly
within the fluid volume. The broad pdf samples much
of the nonlinearity of f. Because f is convex, regions
of anomalously large f contribute proportionally more
to f than regions of small f. As time passes, however,
diffusion leads to homogenization of f and hence a
narrowing of the pdf of f. Then the pdf samples less
of the nonlinearity in f. The contributions to f of large
f still outweigh those of small f, but by a smaller
amount. Hence f decreases.

A rather direct proof that the average of a convex
function f of conserved variables decreases in time can
be constructed via a simple extension of a derivation in
Bilger (1989).3 Below we present an alternative proof

2 In this paper, a variable is said to be conserved if it satisfies the
advection–diffusion equation with no source term.

3 The proof can be obtained by substituting Eq. (9) of Bilger (1989)
into Eq. (1) of Bilger (1989), integrating over the fluid volume, and
then noting that convexity of f ensures a decrease in f . This proof
can be generalized to the case in which f is a function of several
conserved variables.

that emphasizes the fact that, because of diffusion, the
pdf of the conserved variables evolves toward a delta
function, and that the decrease in f is intimately con-
nected to this evolution of the pdf.

First, we assume that each of Ns scalars, F(x, t) 5
(f 1, . . . , ), is conserved. That is, each scalar f bf Ns

satisfies the advection–diffusion equation,

]f ]f ] ]b b
r 1 ru 5 rk f , (17)i b1 2]t ]x ]x ]xi i i

where ui is a component of velocity, r is fluid density,
xi is a spatial component, and t is time. We use the
Einstein summation convention. We have assumed that
the diffusivities k of all scalars are equal. Second, we
assume the fluid system is an isolated material fluid
volume V with (constant) mass M. There is no flow or
molecular diffusion of scalars through the surface en-
closing the element. The bounding surface may be re-
moved to infinity.

Now we write down the evolution equation for the
joint pdf P(C; t) over a material fluid volume. Here C
5 (c1, . . . , ) denotes a possible set of values of thecNs

conserved scalars F(x, t). Then the governing equation
of the pdf can be derived following Colucci et al. (1998):

]f ]f]P(C; t) ] ] g b
5 2 k C P(C; t) . (18)7 ) 81 2]t ]c ]c ]x ]xg b i i

The conditional expectation ^k(]f g/]xi)(]f b/]xi) | C&
is the value of k(]f g/]xi)(]f b/]xi) averaged over those
locations where, for all a, f a(x, t) 5 ca. When only
one scalar is present, it is easy to recognize that the
governing pdf equation resembles the diffusion equation
in scalar space but with a negative ‘‘diffusivity,’’
2^k(]f )(]f / ) | C& (Chen and Kollmann 1994;/]x ]xi i

Dopazo 1994). Hence the pdf evolves from an arbitrary
shape to a delta function centered about the mean.

We now demonstrate that ]ql /]t # 0. When qt and Tl

vary little across the fluid volume and p is constant, the
specific liquid water content averaged over the volume,
ql , is given by

`

q 5 ds9 P (s9; q , T , p, t)[s(q , T , p) 1 s9]l E s9 t l t l

2`

3 H[s(q , T , p) 1 s9]. (19)t l

Renaming the dummy variable of integration in the ql

equation [(19)] and using the Heaviside step function,
we find

`

q 5 dc P (c; q , T , p, t)[s(q , T , p) 1 c].l E s9 t l t l

c52s(q ,T ,p)t l

(20)

Since we assume that qt , Tl , and p are constants over
the fluid volume and in time, so is s(qt , Tl , p). We now
assume that s9 obeys an advection–diffusion equation
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of the form (17). To do so, we assume that qt and Tl

are conserved and neglect the difference between their
diffusivities. Then, taking the partial time derivative of
(20) and substituting in the expression (18) for ]P(c;
t)/]t, we find

`]ql 5 2 dc [s(q , T , p) 1 c]E t l]t
c52s(q ,T ,p)t l

2] ]s9 ]s9
3 k c P (c; q , T , p, t) . (21)s9 t l2 7 ) 81 2]c ]x ]xi i

Integrating by parts yields

]ql 5 2[s(q , T , p) 1 c]t l]t

c5`
] ]s9 ]s9

3 k c P (c; q , T , p, t)s9 t l7 ) 8 )1 2]c ]x ]xi i c52s(q ,T ,p)t l

c5`
]s9 ]s9

1 k c P (c; q , T , p, t) .s9 t l7 ) 8 )]x ]xi i c52s(q ,T ,p)t l

(22)

The first term on the right-hand side vanishes if, for all
times of interest, Ps9|c5` and ]Ps9/]c|c5` tend to zero
faster than c21. The second term vanishes at the upper
limit if Ps9|c5` 5 0. When these conditions hold,

]q ]s9 ]s9l 5 2 k c 5 2s(q , T , p)t l7 ) 8]t ]x ]xi i

3 P [c 5 2s(q , T , p); q , T , p, t] # 0. (23)s9 t l t l

This concludes the proof. Note that the form of the pdf
has been left quite general. Here ql cannot increase,
regardless of the pdf, as long as the pdf and its derivative
vanish fast enough as s9 becomes large.

Proofs such as the above are useful because if the
conclusion of the proof is violated, then we know at
least one assumption must also have been violated. In
addition, the proof is useful because Eq. (23) provides
a formula for the rate of decrease of ql . This formula
depends explicitly only on quantities at cloud bound-
aries, that is, at c 5 2s(qt , Tl , p). Specifically, it de-
pends on the dissipation rate of s9 and the value of the

pdf of s9 at cloud edge. It is clear that ql decreases only
if Ps9[c 5 2s(qt , Tl , p)] ± 0, that is, if the volume is
partly cloudy. Given a particular dissipation rate, ql de-
creases rapidly if Ps9[c 5 2s(qt , Tl , p)] is large, that is,
if many elements within the volume are at saturation.

The mechanism of the temperature decrease is evap-
orative cooling. Advection within a partly cloudy parcel
brings clear and cloudy fluid particles to adjacent po-
sitions. The subsequent diffusive mixing evaporates liq-
uid water, leading to cooling. Because advection re-
quires time, the cooling is not realized instantaneously
(Krueger 1993). The amount of cooling at a particular
moment in time depends on how much mixing has oc-
curred in the past. Even if qt and Tl remain constant
during the mixing process, the parcel ‘‘knows’’ how
much mixing has occurred via its ql or T . Therefore a
parcel can be said to have a ‘‘memory’’ of past mixing.
This memory resides in the degree of mixedness of the
parcel, that is, the finescale distribution of qt and Tl . A
numerical model that diagnoses T from qt and Tl under
the assumption of grid box homogeneity assumes, ef-
fectively, that evaporative cooling occurs instantaneous-
ly. Such models exclude memory effects and thereby
omit a potentially important process in the entrainment
of environmental air by clouds. Krueger (1993) has
speculated that artificially rapid evaporative cooling
may be the reason that some numerical simulations ex-
hibit cloud-top entrainment instability under conditions
in which it is not observed in nature.

The reasoning in the aforementioned proof need not
be restricted to the particular quantity ql . The average
of any twice-differentiable, convex function of con-
served scalars with equal diffusivities in an isolated sys-
tem can be shown to decrease or stay constant in time.
Suppose that a function f (C) of Ns variables is such a
function. Then define the average of f as

A (C; t) 5 dc · · · dc P(C; t) f (C), (24)f E 1 Ns

Vc

where the integral is taken over the full range of C in
the Ns dimensional space of scalars.

To determine whether or not Af decays, we take the
partial time derivative of (24), use the governing equa-
tion of the pdf [(18)] to substitute for ]P(C; t)/]t, and
integrate by parts twice. Then we find

 ]f ]fg b ] k C P(C; t) ]A (C; t)f 7 ) 8[ ]]x ]x5 2 dA n  i i ]f ]fE c b ] f (C) g b]t f (C) 2 k C P(C; t)Ac  7 ) 8]c ]c ]x ]xg g i i 

2 ]f ]f] f (C) g b
2 dc · · · dc k C P(C; t).E 1 Ns 7 ) 8]c ]c ]x ]xg b i iVc
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The surface integral vanishes if the pdf and its deriv-
atives vanish at the outer surface Ac of the Ns dimen-
sional space of scalars C. In this case, we can use the
definition of a conditional average (see Colucci et al.
1998) to obtain

2]A (C; t) ]f ]f1 ] f (F)f g b35 2 d x rk . (25)E]t M ]x ]x ]f ]fi i g bV

Thus Af decreases or stays constant with time if

2 ]f ]f] f (F) g b
$ 0. (26)

]f ]f ]x ]xg b i i

Assuming f is twice differentiable, this condition holds
for all F if and only if f is convex (Hiriart-Urruty and
Lemaréchal 1993, p. 190). Therefore, if f is convex, Af

decreases or remains constant in time.
The result (25) has relevance to some fast-chemistry

reactions. Suppose a chemical reaction occurs much
more rapidly than the timescale for molecular mixing,
so that chemical equilibrium prevails at each point in
the fluid. Examples of such fast-chemistry reactions in
the field of turbulent combustion are discussed by Bilger
(1976, 1989) and Libby and Williams (1994). When the
chemical and thermal diffusivities can be approximately
set equal, and initially the fuel and oxidizer are ho-
mogeneous and separated, then the concentrations of
reactants and products can be written as functions of a
conserved scalar. Sometimes in such reactions the re-
actants are everywhere convex and the products every-
where concave [as in Fig. 4a of Bilger (1976), Fig. 1
of Bilger (1989), and Fig. 3 of Libby and Williams
(1994)]. Then (25) states that the average product con-
centration cannot decrease nor the average reactant con-
centration increase, even temporarily. Sometimes a re-
actant can be approximated, as can ql, as a convex,
continuous, piecewise linear function f (c1) with a slope
discontinuity at a single point (Bilger 1976). In this case,
Af still decreases or remains constant with time even
though f does not possess a first or second derivative
everywhere. This may be seen by proceeding as in the
proof for the decay of ql, Eqs. (19)–(23). Likewise, a
product of a reaction can sometimes be approximated
as a concave function with a slope discontinuity at a
single point; if so, the average product concentration
increases or remains constant with time.

6. Conclusions

Jensen’s inequality allows one to prove that (system-
atic) biases can arise from neglect of subgrid variability
and the use of convex or concave functions (Cahalan et
al. 1994). The present paper points out two examples
of convex functions: the Kessler autoconversion for-
mula, and an approximate formula for specific liquid
water content, ql, that is valid if fluctuations in ther-
modynamic quantities are small. If these functions are
used in a numerical model, then neglecting subgrid var-

iability leads to biases in autoconversion rate (particu-
larly for highly variable but weakly drizzling clouds),
and biases in ql and average temperature (for partly
cloudy regions). If a model contains one of these biases,
then to make unbiased calculations, the model must also
contain an additional, compensating bias.

The biases in ql and mean temperature pose a diffi-
culty for numerical models that diagnose ql . A numer-
ical model could attempt to circumvent the difficulty by
prognosing ql . But accurate prognosis of ql requires
information about the probability density function (pdf )
of thermodynamic quantities. For instance, the rate at
which a radiatively cooled parcel condenses liquid water
depends on the pdf of total water content. If the parcel
is highly subsaturated everywhere, no ql forms; if the
parcel is slightly subsaturated somewhere, ql may form
rapidly. To calculate the increase in ql associated with
cooling, the prognostic ql equation of Tiedtke (1993)
relies on a prognostic equation for cloud cover, which
in turn assumes a reasonable but ad hoc pdf.

Do biases associated with autoconversion and ql sig-
nificantly affect simulations? Pinpointing the source of
model errors is difficult because models contain myriad
physical processes and feedbacks. Nevertheless, we now
cite two prior papers that noted significant errors in their
simulations, and we speculate that the errors may be
related, either directly or in conjunction with positive
feedbacks,4 to the biases we have discussed. First, Fowl-
er et al. (1996) and Fowler and Randall (1996) found
that autoconversion is reduced in (large) general cir-
culation model grid boxes relative to (small) mesoscale
model grid boxes. If large grid boxes encompass more
variability than small grid boxes, as one would expect,
then according to the arguments in the present paper,
underprediction of autoconversion should be more se-
vere in large grid boxes. This is essentially how Fowler
et al. (1996) and Fowler and Randall (1996) interpreted
their results. Second, Sommeria and Deardorff (1977)
performed two simulations of a cumulus layer at fine
grid spacing (50 m): one simulation neglected subgrid
variability, the other did not. The run that neglected
subgrid variability tended to produce less liquid water
than the other. Again, this is what one would expect
from Jensen’s inequality. Although these two sets of
authors noticed underpredictions in their simulations,
the present paper deepens our understanding by proving
that certain microphysical and thermodynamic biases
are systematic and placing them in a general theoretical
framework that links them to the notion of convexity.

How then should modelers reduce the biases? Equa-
tion (3) shows that the average quantities we desire can
be obtained without bias if the pdfs of the relevant quan-

4 For example, a possible feedback was noted by Kristjánsson
(1991), who postulated that increased latent heating may lead to in-
creased vertical velocity in cloudy updrafts and hence further latent
heating.
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tities are known. Therefore we advocate predicting in-
formation about the relevant pdfs using the numerical
model, as suggested by Manton and Cotton (1977),
Sommeria and Deardorff (1977), and Mellor (1977), for
example.
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